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In recent years, realistic synthetic media, commonly known as deepfakes,
have been used to spread fake news or alter narratives of important events,
therefore raising the importance of reliable deepfake detection systems. As
specialized detectors continue to improve, the emergence of Vision-Language
Models (VLMs) question their usability as prompt-driven deepfake detectors.
Recent studies have focused on evaluating VLMs in zero-shot [9, 8] or more infor-
mative prompted settings [6, 5], demonstrating that models such as CLIP [13],
Flamingo [1] and QwenVL [12] exhibit emergent sensitivity to visual inconsisten-
cies without task-specific training. However, despite their inherent robustness
allows them to transfer knowledge to new visual concepts defined purely by lan-
guage, previous studies have primarily concentrated on other types of zero-shot
tasks like image classification [15, 13], object detection [3] and visual question
answering [10, 7, 2], and only handful of them have explored the use of VLMs
as standalone deepfake detectors in true zero-shot or few-shot settings [11, 16],
particularly under realistic visual conditions.

Consequently, our work addresses this gap, first by reframing deepfake de-
tection within the context of social network imagery: instead of evaluating
on controlled, high-resolution facial datasets such as FaceForensics++ [14] or
Celeb-DF [17], we use SID-Set [4], a dataset designed to mirror the hetero-
geneous nature of images commonly found on modern social media platforms.
We evaluate recent State-Of-The-Art VLMs in zero-shot and one-shot settings,
exploring a range of prompting strategies and observing that more structured
or information-dense prompts do not always lead to improved performance. As
part of this exploration, we also introduce dynamic prompting, an image-tailored
approach that encourages the model to consider visual cues inspired by classi-
cal computer vision techniques, such as edges, color distributions, lighting, and
depth. Our observations suggest that, while dynamic prompting can influence
the model’s analytical process, its effectiveness is not uniform.

Finally, extending our focus on social network imagery, we evaluate the
models on compressed versions of the dataset to better reflect real-world social-
network conditions. Results show that compression artifacts further challenge
VLM performance, suggesting that additional work is needed before prompt-
driven deepfake detectors can operate reliably in the wild.
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